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1 Introduction - Michael Zeng

In the Robotics Science and Systems Final Challenge, our overarching objective
was to integrate our learnings from prior labs in sensing, localization, planning,
and controls, into one robotic system, in order to achieve a greater degree of
robotic autonomy and intelligence. The Challenge therefore presented two tasks:
driving the fastest lap possible around the Johnson Center Track, and driving
through a city-like obstacle course in the Stata basement to reach landmarks
while obeying traffic laws.

Achieving success in these tasks was primarily a challenge in integration and tun-
ing. In prior labs, we’ve already developed implementations and mathematical
intuition of core algorithms like Monte-Carlo Localization, Pure Pursuit path-
following, Rapidly-exploring Random Tree (RRT) and Graph of Convex Sets
(GCS) path planning, PID control, Image Processing methods using OpenCV,
and more. Given the high speeds required on the Johnson Track and the high
degree of complexity of the obstacle course in Stata basement, our focus in the
final challenge was different; rather than building new algorithms, we focused,
firstly, on finding the best way to integrate existing algorithms into one system,



and secondly, on modifying and adapting these algorithms to be robust in the
final challenge conditions. Through many hours of testing and tuning, we were
able to complete both of the Final Challenge tasks with a high degree of success.

2 Challenge Part A: Track

2.1 Overview - Michael Zeng

The first part of the Final Challenge is evaluated on both speed and accuracy
of our car on the Johnson Center Track (See Fig. . We were awarded points
for the car completing the track in a short amount of time, and penalized for
instances and duration of the car driving out of its designated lane and colliding
with cars in other lanes. Therefore, it was a priority to develop a vision system
that is highly reliable and a controller that is stable and easy to tune for high
speeds.

Figure 1: Racing on the Johnson Center Track from the car’s Point of View

As a result, our system consists of two modules: first is an image processing
module that utilizes masking and edge detection to reliably determine a ”looka-
head point” for the car. This lookahead point is then passed to the pure pursuit
module which we carefully tuned to perform at our desired speed.

These systems combined have allowed us to reliably race around the track at
the car’s maximum speed of 4 m/s without incurring penalties.

2.2 Track Technical Approach - Julianne Miana

Our technical approach was straightforward: use our image processing module
to detect lane lines and compute a lookahead point, and then pass the point to



the homography transformer and pure pursuit controller to set the speed and
steering angle of our car. Our image processing module uses techniques such
as masking, Hough Line transforms, and Canny edge detection, to consistently
detect lane lines and compute a lookahead point by using geometry on our de-
tected lines. Our homography transformer, unchanged from Lab 4, and our
pure pursuit controller, a simplified version of our Lab 6 controller, then takes
this point to calculate a steering angle for our car at our set speed.

2.3 Image Processing and Finding the Lookahead Point -
Liane Xu

The goal of image processing for the track is to find an appropriate pursuit

point. We ended up using a pursuit point that lies on a line that bisects the

two lines that bound the car. The angle/slope of the bisecting line was biased
toward the angle/slope of the line on the right side of the lane.

In more detail, we found the pursuit point through the following steps, using
OpenCV (see Fig. [2)):

1. Convert the incoming video from RGB to grayscale.

2. Apply a trapezoidal cropping mask to remove excess information from the
image.

3. Threshold the grayscale image to find the white lane lines.
4. Use a Canny edge detector to get an edged image.

5. Apply a Hough line transform to the edged image. Search for the lane
boundary lines — the slopes of the right and left lines each lie within a
specific range.

6. In the case that a left and/or right line is not found, use the previous left
and/or right line.

7. Draw a third "pursuit” line starting at the intersection of the left and
right lines, with a slope that is

bias * (left line’s slope) + (1 — bias) * (right line’s slope).

On our car, bias = 0.4 to counteract the car’s natural drift to its left as it
runs.

8. Draw the pursuit point on the pursuit line, a specified distance away from
the left/right lane intersection point. On our car, that distance was 150
pixels. This look ahead distance was found experimentally to work best
for lane-following and prevent oscillations.



Figure 2: Sequence of images showing pursuit point image processing. The
leftmost image shows steps 1 and 2. The center image shows step 4. The
rightmost image shows steps 4-8, where the blue line is the left lane line, the
red line is the right lane line, the pink line is the pursuit line, and the aqua dot
is the pursuit point.

2.4 Pure Pursuit Controller - Binh Pham

The lookahead point coordinate in the image is then passed to the homogra-
phy transformer from Lab 4, which converts it into a real coordinate. The pure
pursuit controller reads this point and pursues it by setting the steering angle to

Lsin Qtarget

arctan ,
1/4 4 L cos Oiarget

where L is the wheelbase length and 0¢arect is the angle to the target point from
the car’s frame.

The pure pursuit controller is a stripped down version of the pure pursuit con-
troller from Lab 6. We no longer need to worry about adjusting lookahead
distance and finding the lookahead point, since that is fulfilled by lane detec-
tion. We set the speed to be a constant 5m/s. This is more than the car’s speed
limit of 4m/s, but we set it higher than 4m/s in case the car could go a bit
faster than 4m/s.

Another optimization we made was to constantly publish drive messages. Orig-
inally, we published a drive message only when the pure pursuit controller re-
ceived a point. However, if lane detection is slow, there could be very brief
moments where the car is not receiving drive commands. To make sure we are
constantly driving, we update the steering angle as the pure pursuit receives
points and publish drive messages with that steering angle and speed of 5m/s
every 0.05 seconds.

2.5 Track - Experimental Evaluation - Julianne Miana

To evaluate our Mario Circuit program, we completed three laps around Johnson
track on race day and used lap time, collisions, and lane breaches as our metrics.
Table [I| below shows our results from race day. Across our three runs, our car
was consistently fast and accurate. All trials except one produced a race split
under 50 seconds. The trial over 50 seconds was still close at 51 seconds and



only took slightly longer due to a brief stop in our lap to avoid an unforeseen
lane obstacle. Overall, our average race split was 49.67 seconds (0:49:40 sec),
which was under the 50 seconds we were aiming for. Additionally, our car was
accurate because across all trials, it had no collisions or lane breaches at all.
Using the staff-given equations

Score = min(100 4 (50 — best_race_split), 110) — penalties,

penalties = 15 x* collisions + 5 * lane_breaches 4+ 5 * long_breaches,

for Mario Circuit scoring, we achieved scores of 99 and 101 for an average of
100.33 across three runs.

Our team also participated in the elimination round and placed 1st in our first
race and 2nd in our final race. This round further showcased our car’s speed,
accuracy, and consistency, as our car remained in its lane without veering off-
course and sped past other cars to secure 1st and 2nd place positions. Overall,
our team is satisfied with our car’s performance as it showed our program’s
robustness and reliability in accomplishing the challenges involved in this task.

Table 1: Results of our Mario Circuit challenge. Overall, our car was consistent
in its accuracy (no collisions and breaches) and speed (each race split was close
to or under 50 seconds).

Round | Race Collisions Lane Long Overall
Split Breaches Breaches Score
1 0:51 0 0 0 99
2 0:49 0 0 0 101
3 0:49 0 0 0 101
Average | 0:49:40 0 0 0 100.33

3 Challenge Part B: City Driving

3.1 Overview - Michael Zeng, Binh Pham

The second part of the Final Challenge is evaluated on the car’s ability to reach
designated landmarks (called “shells”) without incurring penalties for traffic vio-
lations, being too slow, or requiring manual intervention to assist the car. Traffic
violations include running red lights, not fully stopping at stop signs, stopping
at green lights, cutting into the opposing traffic lane, and hitting pedestrians.
One particular difficulty in this part of the challenge is that the designated land-
marks are chosen by course staff after the car’s software has been finalized.

Given the number of considerations in this part of the challenge, we decided
to prioritize simplicity and flexibility in our approach. Therefore, we based our
approach around Monte-Carlo Localization, path-planning, and path-following;



this allowed us to utilize multiple algorithms from previous labs including our
Monte-Carlo Localizer and Pure Pursuit path-follower, and gives us easy ability
to modify paths in real time. In addition, this approach treats reaching the
shells as the foremost concern, as the shells reward the most points in the chal-
lenge, while making a best effort to obey traffic laws along the way.

In detail, our approach involves a main loop that is running localization and
path-following at as high of a rate as possible. The path being followed is man-
ually pre-planned (called the “Master Path”), with small deviations from the
Master Path to the shells planned in real time. U-turns to reach shells behind
the car are also planned in real time. Traffic considerations (such as detecting
and stopping for traffic lights, stop signs, and pedestrians) are integrated as
interrupts and intermediate procedures to the main path-following loop, with
detections occurring only in specific locations and at much lower rates to retain
a high localization loop rate and accuracy.

This high level approach has allowed us to reach all shells along cityscape while
incurring only occasional penalties for small deviations over the lane lines and

manual interventions for localization inaccuracies.

Fig. [3] provides a general overview of our city driving.
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Figure 3: An oversimplified state diagram of our city driver. It starts at “Follow
Master Path” and will be in that state for the majority of the time. We make
an arbitrary distinction in this diagram between “Park” and “Stop”. Park lasts
a set amount of time, while “Stop” lasts until some condition.



3.2 Localization Tuning - Binh Pham

Our city driving is very dependent on Localization. Path following, path plan-
ning, and traffic light detection are all dependent on localization. Thus, to
perform well in city driving, we needed a particle filter that performed well.
We spent a lot of time tuning the localization and ended up with localization
that performed well enough for us to drive the entire Luigi’s Mansion city. We
do not have the exact values with us as we forgot to pull our car’s localization
code before returning it (we only pulled our final challenge code); however, we
will try our best to remember. When resampling particles, we added noise to
their x and y values that was drawn from N (0, (0.5 vcar)Q). Since our distance
estimates always came up short, we added 1.1 to the x and y velocities given by
the odometry message to make the motion model more accurate.

3.3 Trajectory Planning - Binh Pham, Michael Zeng
3.3.1 Real-Time Planner

Our real-time planner is interconnected with the follower. If the planner does
not say anything, the car will follow the Master Path. The Master Path is hand-
drawn and based on the lane line in Stata. The car follows the right side of the
Master Path to stay in the correct lane. More details on this are in Section [3.4]

The planner keeps track of which lane the car is in. The car always starts in
the outer lane. The planner is in charge of managing U-turns. When it detects
that the next shell is behind the car, it waits until the car is in a designated
U-turn zone, then decides to initiate a pre-programmed U-turn routine. The
U-turn zones are defined in hallways and open areas, away from traffic zones
and pedestrian crossings to ensure total safety of the maneuver, as seen in Fig.
@ After the U-turn is conducted, the Master Path is reversed so that the car
will now drive in the opposite direction.

When adding shell points, the planner keeps track of which side of the lane each
shell is on using a custom-drawn occupancy grid, where we color inner and outer
lanes differently, as seen in Fig.



Figure 4: Custom Occupancy Grid that allows the car to determine which lane
each shell is in. Values of 0 denote free space, 25’s denote inner lane, 50’s denote
the lane line, 75’s denote the outer lane, and 100’s denote everything else.

We store both the shell sides and car side with 25 for inner lane and 75 for outer
lane. We will see the use of these numbers when we plan early U-turns.

The planner attempts to plan an action every time it receives a new pose esti-
mate for the car from the localization node. It can either plan U-turns or shell
paths.

When the car is within 3 meters of the next shell, is on the lane side as the car,
and the previous shell has been collected, it will attempt to plan a collision-free
straight line path from the car to the shell. If it does find one, it will send
that trajectory to the follower and mark that it has not collected the previous
shell. An example of a straight line path to the shell is shown in Fig. The
path follower will then follow the path to the shell and park at the shell for
five seconds (as specified in the challenge requirements). The path follower then
resumes following the Master Path and publishes a True boolean message to
“/shell_collected”. The planner subscribes to this topic and when it receives
that message, it will mark that the previous shell has been collected, making it
able to plan for the next shell.
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Figure 5: An example of a straight line shell path from the Master Path to a
point near the shell. The straight white line near the shell is the straight line
path to the shell and the C-shaped white line on the right is the Master Path.
When the follower receives the shell path, it will start following it instead of the
Master Path.

Our planner plans U-turns whenever the car is in the end zone, which are the
lane ends of Luigi’s Mansion as illustrated in orange in Fig. [6] Whenever
the planner plans a U-turn it publishes a message (we used a Boolean but it
could be any type) to the “/turnaround” topic. When the follower receives
this message, it will make the U-turn if it can. More details on driving the
U-turn will be in Section If it can make the U-turn, it will publish True to
the “/turn_outcome” topic and False otherwise. The planner subscribes to this
topic, and when it receives True, it knows that the U-turn was successful and
that the car is now on the other side of the lane.

Our planner also plans U-turns whenever the car is in a turn zone, as seen in
green in Fig. [6] and the next shell is on the other side and behind the car. To
find whether the shell is behind the car, we first compute ‘shell_index’, the index
of the closest Master Path segment to the shell and ‘car_index’, the index of the
closest Master Path segment to the car. This is the same computation from Lab
6, except we never exclude segments from being considered the closest segment.
The path planner never reverses the copy of the Master Path it has, only the



path follower will ever reverse its Master Path, so the shell indices never change
even if the car switches lanes. This also means that a higher index always means
it is closer to the end near the vending machines. Next, we define ‘shell_side’
as the side the shell is on and ‘car_side’ as the side the car is on. These have
values of either 25 for the inner lane or 75 for the outer lane. Finally, to check
if the shell is behind the car, we check if the boolean expressions ‘car_index >
shell_index’ and ‘car_side > shell_side’ evaluate to the same value. The planner
publishes the message telling the follower to make a U-turn.

We can also U-turn in a turn zone if the next shell is behind the car but on
the same side. If the car and shell are both in the inner lane, we plan a U-turn
if ‘car_index < shell_index’. If the car and shell are both in the outer lane, we
plan a U-turn if ‘car_index > shell_index’.

That is the essence of our path planner, but we have other features to make it
more robust. First, when a shell is placed, the point the car will end up going
to is a little closer to the path. It will be 20cm away from the shell to be exact.
This is so the car would not have to deviate away from the Master Path as much
while also being able to collect the shell. We found this point by first finding
the closest point on the Master Trajectory, which is done by projecting vectors,
which is described in Lab 6 in the finding closest segment section. We drew a
line from the shell to the closest point and picked a point on this line that was
20cm away from the shell, or on the closest point if the shell is too close already.
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Figure 6: We defined various zones on the map. The orange zones are the end
zones, the lane ends where the car will U-turn. The pink zone is the pillar
zone, which is where the car needs to swerve the pillar. The yellow zones are
the buffer zones, where the car starts slowing down before traffic lights. The
red zones are the traffic zones, where the car will either stop or go depending
on whether it saw green during the buffer zone. The green zones are the turn
zones, where the car can safety make an early U-turn before reaching the end
zones.

3.3.2 Better Real-Time Planner

We also developed a second real-time planning paradigm that attempts to im-
prove the speed and efficiency of the planned path deviations. Although this
method was not implemented on the physical robot due to its additional com-
plexity and reduced robustness, we still think it is worth mentioning as it has
potential to improve performance of our system. In this paradigm, the devia-
tions from the Master Path are calculated as soon as the shell points are inputted
by the course staff. This method plans U-turns in the same manner as the first
planner discussed in Section In total, four connected paths are computed
and stored, with each end point corresponding to either the location of a shell
or the ending location of the car. An example is show in Fig. [7]
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Figure 7: This example demonstrates three connected paths (red, green, and
blue) that join the car’s starting position to two shells (with the third shell
off-screen). The white line is the Master Path from which the red, green, and
blue deviations are branched off of.

The core of this method is that it considers the minimum turn radius of the
car and attempts to minimize the extra distance the car must travel to reach
the shell. At a high level, it places a circle that goes near the shell, then finds
collision-free tangent lines to connect back to the Master Path.

The first step in the algorithm is to compute the closest point on the Master
Path to the shell; this is done using a linear search along the Master Path to find
the nearest segment to the shell, then using a vector projection to compute the
closest point. The center of the circle will then be placed on the line segment be-
tween the shell and the closest point on the Master Path, as illustrated in Fig.
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Figure 8: The center of the circle is placed an arm’s length (0.5 m) from the
shell, on the line segment between the shell and the closest point on the Master
Path to the shell.
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Next, the algorithm computes the points on the Master Path from which to
branch off to the circle. To do this, the algorithm performs two opposing linear
searches along the Master Path segments adjacent to the closest point to the
shell. From each point in each linear search, the two possible tangent lines to
the circle are drawn; the tangent line that falls closer to the shell is chosen. This
tangent line is then checked for collisions; the first tangent lines in each linear
search that are collision-free are taken as part of the modified path. The result
of this operation is two tangent lines on each side of the circle connecting the
circle to the Master Path, as illustrated in Fig. [0

y

Figure 9: Visualization of the opposing linear searches. The white line is the
Master Path. The black objects are dilated obstacles. The green tangent lines
are the two tangent lines that are chosen; the grey tangent lines are not chosen
because they are in collision (note that the blue lines are not computed in reality
since the linear searches end once the green lines are found.)

With the tangent lines computed, the modified path is as shown in pink in Fig.
10
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Figure 10: The modified path to the shell.

This procedure is repeated for each shell, with separated trajectories computed
between shells, such that the planner is able to pause after reaching each shell.

There are many edge cases that must be handled in the software that have been
glossed over for the sake of brevity; for example, what happens if the shell is
close to the Master Path, such that the circle is on the opposite side of the
Master Path as the shell? What if the circle encloses multiple segments in the
path? One such example is illustrated in Fig.
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Figure 11: Example of an improperly handled edge case; the tangent line is
drawn on the wrong side of the circle because of obstacles in the way. (The
white line is the Master Path, the red and green lines are the modified paths
computed.)

Since we used the simpler real-time planner described in Section[3.3.1]during the
final challenge runs, we have not extensively evaluated this second path-planning
method, but we have shown that it demonstrates promise in generating feasible
paths that better optimize path length.

3.4 Trajectory Following - Binh Pham

To follow the Master Path and shell paths, we modified our Pure Pursuit con-
troller from Lab 6. Since the Master Path is based on the lane lines, we want to
follow the right of it to stay in the correct lane. To accomplish this, we simply
take the lookahead point on the Master Path and shift it 50cm right in the car’s
frame. However, we shift it differently in two cases. The first is when the car
needs to turn. If we use the shift of 50cm right, the car will cut the corner
and hit the wall. We define a turn as when the magnitude of the angle to the
lookahead in the car’s frame is greater than 30 degrees. In this case, we shift
the point forward 50cm and 12.5c¢m left in the car’s frame for a right turn and
12.5cm right for a left turn. With this different shift, the car makes a wider turn
and is able to turn without collision. The second case where a different shift of
the pure pursuit lookahead point is required is when passing by the pillar in one
of the hallways. Since this area of the hallway is so narrow, when the lookahead
point is within this pillar zone, we adjust the shift to instead be 50cm to the left
of the lane, causing the car to momentarily swerve around the pillar, avoiding
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collision. This behavior is illustrated in Fig.

Figure 12: Near the pillar, the pure pursuit lookahead point is momentarily
shifted left instead of right, to force the car to swerve around the pillar and
avoid collision.

When the follower receives a straight-line path to a shell from the real-time
planner, the follower will begin following that path instead of the Master Path.
When the follower follows the straight line shell path, it does not apply any
offsets. After it reaches a point near the end of the shell trajectory, it will stop
for 5 seconds to collect the shell. Finally, it returns to following the Master
Path. Previously, upon receiving the shell trajectory, we had the car reverse to
align itself with the straight line trajectory. After parking, the car would reverse
back to the beginning of the shell path to return to the Master Path. However,
after being told that the RSS staff would be nice with their shell placements
(the shells would not be placed in nooks or crannies that would require complex
maneuvering for the car to reach), we removed these two reversing behaviors.

The follower also handles the driving of U-turns. When receiving a message to
U-turn from the planner, it will check to make sure it is not currently following a
shell or performing hard-coded driving like parking or reversing. Our U-turn is
actually a 3-point turn so that we can turn around in tight spaces. If conditions
are clear for the U-turn, the car will drive forward 1m/s with max steering angle
to the left for 1 second, then reverse with max steering angle to the right for 1.25
seconds. Finally, it reverses its Master Path. Following the Master Path again
will complete the final part of the 3-point turn. These stages are illustrated in
Fig. [[3] After completing the U-turn, the follower publishes a True message to
“/turn_outcome” to let the planner know the car is now on the other lane.
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(d) Car After U-Turn Completion

Figure 13: The stages of the hard-coded U-Turn. Our U-Turn is in actuality a
3-point turn so that we can turn around in narrow hallways.

The follower is also part of traffic light and stop sign detection; however these
will be described in more detail in the next two sections.

17



3.5 Traffic Lights - Julianne Miana and Liane Xu

Our team adopted a simplified approach to traffic light detection and combined
it with driving logic to produce a reliable and robust traffic light detector. For
light detection, our team opted to detect the green light only, as varying light
conditions and noise (i.e. surrounding objects similar in color) made it harder
to consistently detect the red light. For our driving logic, we defined and used
traffic light detection zones to activate our light detection algorithm at the ap-
propriate time as the car approaches each traffic light.

Our light detection algorithm processes each frame in the following way (see
Fig.
1. Create grayscale and HSV images from RGB image (taken by camera)

2. Make cropping mask using a customized shape. To find the optimal shape
for cropping, we used frames from a video of our car following our planned
path and reduced the image to just areas where the traffic light could show
up in the camera frame.

3. Apply cropping mask to the HSV image

4. Create a green mask image by thresholding the HSV image to detect green
light

Find contours in green mask image

(@3

6. For each contour, get its area and mean value of the pixels it encloses on
the grayscale image. Without the mean and area conditions, bright pixels
in the red light region could still be detected (see Fig.

(a) If (50 < mean < 120) and (100 < area < 1200)7] a green light is de-
tected

Figure 14: Image processing sequence to find green lights. The leftmost image
shows the cropped photo (step 2). The center image shows the result of applying
the HSV green mask to the grayscale image (step 4). The rightmost image shows
proposal of a green light (contour meets mean and area criteria), marked by a
pink circle (step 6).

IMean and area ranges were determined through sampled images from path-following video.
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Figure 15: Image showing false positives for green light detection. Proposed
green lights are shown in pink circles in the bright regions of the red light.

As a supplement to our green light detector, we incorporated straightforward
driving logic that enables our car to check for a green light as it approaches a
traffic light. A stop line and light detection zone were defined at specific radii
from each traffic light to implement this logic. Fig. illustrates this stop line
and zone. The high-level logic followed by the car as it approaches a traffic light
is as follows:

1. If in traffic light detection zone:

(a) If GREEN LIGHT: Continue
(b) Else: Wait at stop line until GREEN LIGHT

Light

(

NN\
534 >
\
<5< \\ N\ ?}R\\

Stop line

NN A

Traffic light detection zone

Figure 16: Diagram of light detection zone implemented for our driving logic.

To optimize our traffic light detector, we experimentally tuned our traffic light
zone and stopping line radii, traffic light positions, and green mask minimum
and maximum HSV values to maximize reliability.
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3.6 Stop Signs - Liane Xu, Binh Pham

To find the stop signs, we used the provided YOLOVS object detection model.
We initially masked out the lower half of the image because the signs are
mounted off the ground, but found that not using any masking worked bet-
ter due to how slow the detection was running. Whenever a stop sign was
detected, we published a True boolean message to “stopsign”. The path fol-
lower subscribes to this topic and when it receives a message, it will park the
car for two seconds.

3.7 Pedestrians - Binh Pham

We used our safety controller from Lab 3 to avoid hitting pedestrians. It sends
higher priority drive messages, so it will always stop if it detects pedestrians or
obstacles in front of the car.

3.8 City Driving - Experimental Evaluation - Julianne Mi-
ana, Binh Pham

To assess the performance of our city driving program, our team completed
three runs through Luigi’s Mansion. For our metrics, we used number of shells
collected, whether we returned back to the starting area, completion time, and
traffic violations to determine the effectiveness of our program.

As we conducted our trials, we found a trend of improvement in our city driving
performance, which was reflected in our increasing scores. For our first trial,
we successfully collected all three shells and returned to start; however, due to
a bug in our planner, we missed our U-turn, which forced our car to make the
U-turn at the end zone. Although this took our car on a longer path, this also
showed the reliability and robustness of our program as it still allowed our car
to complete a path back to start, despite missing an early U-turn. For trial
2, the bug in our planner was fixed, which allowed our car to collect all shells
using a shorter path and in a much shorter time. For trials 1 and 2, we each
had 1 lane crossing, which prevented a perfect score in our second trial. Lastly,
for trial 3, our localizer allowed our car to avoid the previous lane crossing from
trial 2, which ultimately allowed our car to achieve the maximum possible score.

Besides the one-lane crossing in trials 1 and 2, both our localizer and controller
were shown to be sufficiently robust as they consistently allowed our car to
complete maneuvers, such as deviating from and returning to our Master Path
to pick up shells and make U-turns to return to our starting position. This
robustness is reflected in our car’s consistent completion of the path to pick
up all three shells and in its successful return to start. Our path planner was
also very reliable as the car stopped within arm’s length of every shell in each
trial. Although the planner did not attempt to optimize path length, it was
still surprisingly efficient as the pure pursuit controller smoothly and efficiently
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returned to the Master Path.

Our trial runs also demonstrated sufficient reliability for our traffic detectors.
For example, our stop sign detector was effective, as our car achieved a full stop
at the stop sign for each trial. However, the detector was not entirely consistent
as the car stopped at varying distances after the stop sign in trials 1 and 2, as
seen in Fig. Our traffic light detector also worked well, as no red lights
were ignored and green lights were consistently detected. Our trial runs did
not involve any pedestrians, so we were not able to experimentally evaluate our
pedestrian detector along with the other detectors. Given that it was consis-
tent in our pre-competition tests, we are confident that our pedestrian detector
would have also worked, had a pedestrian been involved in the trial runs.
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(c) Trial 3

Figure 17: The position of our car after it detected and stopped for the stop
sign in each of our three city driving trials.

Overall, our city driving program was sufficiently robust and reliable to accom-
plish each challenge of the city driving task. Our program collected all three
shells and only incurred one penalty for two runs: a lane crossing. Since our ap-
proach was to prioritize collecting all shells first and then minimizing penalties,
we are satisfied with our city driving program, as it accomplished exactly that.
It kept our penalties to a minimum (the maximum number of violations for
any one run was 1 with the final run incurring no penalties) while collecting all
shells and returning to our starting position, which earned us bonus points for
all trials. Table [2] presents our results for each trial and shows an improvement
in overall score, as we fixed a bug in our planner. The overall score is calculated
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based on the staff-given equations

Score = location_score — penalties,
location_score = 40 * L1 + 30 * L2 + 30 « L3 + 20 * (L1 A L2 A L3 A Start),
penalties = min(5  traffic_infractions, 30) + 10 * manual_assist

+ min(seconds_over_baseline, 30),

where baseline was 2 minutes and L1 to L3 are binary variables that represent
the shells picked up.

Table 2: Results of our City Driving trials. Our best score was in Trial 3, where
we achieved the maximum score possible.

Trial Shells Time Penalties Overall Score
1 3 4+ Bonus  3:15 1 Lane Fault 95
2 3 + Bonus 1:22 1 Lane Fault 125
3 3 + Bonus 1:22 None 130

4 Conclusion - Liane Xu

In this lab, we adapted what we learned from previous labs and implemented
new ideas to make our car drive around Johnson Track and navigate obstacles
around Stata Basement.

For the Johnson Track (Mario Ciruit) portion of the challenge, we used pure
pursuit, following a point that fell along the line bisecting the left and right
lines. To find the left and right lines of a given lane, we made a custom mask
and filtered through lines proposed by the Hough Transform. We tuned the
location of the pursuit point to minimize oscillations and overcome our car’s
natural drift. Overall, we created an algorithm that allowed our car to perform
consistently and at the full 4 m/s speed.

For the Stata Basement (Luigi’s Mansion) portion of the challenge, we com-
bined localization, pure pursuit, RRT, our safety controller, image processing,
and machine learning to drive our car to specified points (unknown ahead of
time) while obeying traffic lights, stop signs, and avoiding pedestrians. Overall,
we found this portion of the challenge to be more difficult than the Johnson
Track because there were more interdependent parts. Almost all of our traffic
detectors relied on localization to some extent, so we spent a lot of time tun-
ing that. We also spent a lot of time trying out different methods for traffic
light detection before coming to the conclusion that it was the easiest to detect
“green” or “not green” rather than “green” and “red”. In the end, we were able
to obtain full points.
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Given more time, there are many improvements we would apply to our Luigi’s
Mansion stack. First, we would implement a path planner that takes into ac-
count the angle the car stops at the star/shell locations so the car can follow
a smoother trajectory from the star/shell location back to the main trajectory.
We would also get the stop sign detector to work faster so the car consistently
stops in front of the sign rather than after passing the sign. We would also
implement a more robust traffic light detector that thresholds the green better,
or senses red lights as well as green lights.

This lab also provided us with non-technical takeaways. We learned to trust our
abilities when things are looking down. We also learned about how to determine
what issues to prioritize to manage our time best while maximizing the quality of
our work. Lastly, we feel through the course of the semester, our team was able
to build a sense of trust that helped us succeed through this difficult challenge.

5 Appendix

e Track Run 1 Video Footage
e Track Run 2 Video Footage

Track Run 3 Video Footage

City Driving Run 1 Video Footage

City Driving Run 2 Video Footage

City Driving Run 3 Video Footage

6 Lessons Learned

6.1 Julianne Miana

Given that this final challenge needed several interdependent working compo-
nents, an important lesson for our team was starting and testing each module or
component early. This allowed us to debug and tune previous implementations
to improve our car’s performance in each challenge. Despite making progress
early on, however, we still had to stay up the whole night before competition
day to work on our city driving. Another lesson that I found critical was try-
ing multiple approaches to each challenge. For both the Johnson track and
city driving challenges, our team attempted different approaches which allowed
us to pinpoint areas that needed improvement and further optimization. In
terms of teamwork, working on different modules also allowed us to streamline
progress as a team. Lastly, we learned that integration is another challenge in
itself because we needed to make sure individual modules or components not
only worked well individually but also with other interdependent components
to ensure good system performance.
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https://drive.google.com/file/d/16PKAUMtPiXwXx9qntAB9XpaxjidNsE32/view?usp=sharing
https://drive.google.com/file/d/154QyViomkrs9PUD9Azdl98_pEDqulB44/view?usp=sharing
https://drive.google.com/file/d/1SeED2H205u_ZdslhSLBI83ogu5fEWrML/view?usp=sharing
https://youtu.be/7tbmQWu1GNs
https://www.youtube.com/watch?time_continue=1&v=bZWEaV2l5So&embeds_referring_euri=https%3A%2F%2Fdocs.google.com%2F&embeds_referring_origin=https%3A%2F%2Fdocs.google.com&source_ve_path=MjM4NTE&feature=emb_title
https://www.youtube.com/watch?v=0YXAsjrSjvg&embeds_referring_euri=https%3A%2F%2Fdocs.google.com%2F&embeds_referring_origin=https%3A%2F%2Fdocs.google.com&source_ve_path=MjM4NTE&feature=emb_title

6.2 Binh Pham

Localization tuning was painful, but I got through it and our localization now
works super well. Even though our car did not need to go through the full
city driving course on race day, our car’s localization was robust enough that
even though it missed an early U-turn in one trial, it returned to the start area,
making all the localization tuning worth it. Integrating traffic lights was also
difficult, as we did it right before race day and it caused some other problems.
I am grateful for my teammates who worked on computer vision because I did
not have enough experience with vision to work on it for the final challenge.
Seeing the car following the Johnson track without ever going out of its lane
was amazing. The traffic light was also really cool, though it could be improved
a bit. During this challenge, especially during this time when everyone is very
busy, regular communication was key to coordinate meeting times to get as
much time working on the robot as possible. In the end, we still did not have
enough time and ended up pulling an all-nighter before race day. Thus, I also
learned that I can work on robotics for 27 hours straight without sleeping, which
is not really good, but I am surprised I could do it. Stick a fork in me, I'm done.

6.3 Liane Xu

This challenge taught me about thinking creatively and debugging. Our plan
for how to approach each part of the challenge evolved a lot throughout these
couple of weeks through debugging, doing reality checks, and accidentally dis-
covering things that work. Even though the final challenge was supposed to be
a culmination of things we’d already implemented or learned, we struggled to
get everything working together as one system, and tuning our components to
solve the new problems. I'm grateful for my teammates.

6.4 Michael Zeng

Most of all, this challenge demonstrated to me the seemingly exponential re-
lationship between the number of constraints and considerations in a robotic
system and the complexity of the software required. Although every module
in the final challenge was fairly simple in itself (like stopping in front of a stop
sign), integrating these into a system intended to drive the entire course reli-
ably was incredibly difficult and time-consuming. The final challenge also, once
again, exemplified the importance of accurate localization. Our most persistent
problem in Part B of the challenge was "losing” localization, which not only is
a problem in itself but made it harder to debug other problems with our path
follower or U-turn procedure. Prioritizing this in Labs 5 and 6 could have made
the final challenge easier.
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